首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
统计学   2篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Modeling spatial overdispersion requires point process models with finite‐dimensional distributions that are overdisperse relative to the Poisson distribution. Fitting such models usually heavily relies on the properties of stationarity, ergodicity, and orderliness. In addition, although processes based on negative binomial finite‐dimensional distributions have been widely considered, they typically fail to simultaneously satisfy the three required properties for fitting. Indeed, it has been conjectured by Diggle and Milne that no negative binomial model can satisfy all three properties. In light of this, we change perspective and construct a new process based on a different overdisperse count model, namely, the generalized Waring (GW) distribution. While comparably tractable and flexible to negative binomial processes, the GW process is shown to possess all required properties and additionally span the negative binomial and Poisson processes as limiting cases. In this sense, the GW process provides an approximate resolution to the conundrum highlighted by Diggle and Milne.  相似文献   
2.
The generalized Waring distribution is a discrete distribution with a wide spectrum of applications in areas such as accident statistics, income analysis, environmental statistics, etc. It has been used as a model that better describes such practical situations as opposed to the Poisson distribution or the negative binomial distribution. Associated to both the Poisson and negative binomial distributions are the well-known Poisson and Pólya processes. In this article, the generalized Waring process is defined. Two models have been shown to lead to the generalized Waring process. One is related to a Cox process, while the other is a compound Poisson process. The defined generalized Waring process is shown to be a stationary, but non homogenous Markov process. Several properties are studied and the intensity, individual intensity, and Chapman–Kolmogorov differential equations of it are obtained. Moreover, the Poisson and Pólya processes are shown to arise as special cases of the generalized Waring process. Using this fact, some known results and some properties of them are obtained.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号